
Session Number 1067
Mike Peckar

Fognet Consulting

The Ups and Downs of NNM Status Polling

Prepared by

Mike Peckar
Fognet Consulting

fognet.com

This session will focus on:

• Understanding NNM’s default status polling behavior
• How status polling has come to be “adaptive”
• The entry points to customizing NNM’s polling behaviors

• Alarms that convey status
• Understanding their default behaviors and idiosyncrasies
• How the number of alarms received are reduced by NNM

• Default Event Correlation logic that pertains to device status
• Its effects on the alarms seen in the alarm browser
• Its dynamic effects on status polling behavior
• Everything you needed to know but were afraid to ask

In a nutshell

• netmon performs discovery and status polling
• ICMP/IPX polls issued to interfaces discovered by NNM
• SNMP status polls issued to agents, about interfaces
• Polling intervals are set in different ways and dynamically

• The event subsystem conveys status to Alarm Browser & maps
• Alarm browser is “node centric” through NNM V6.31
• Map status is propagated from interfaces

• Event Correlation introduced in NNM V6.0
• Connector Down correlation addressed cascade failures
• Pair-Wise, Repeated Event correlation reduce status alarms
• NodeIf correlation added in NNM V6.31 – tectonic changes
• Status correlations tied heavily to netmon, event subsystem

NNM status through the ages

• NNM V5.0
• Bridge MIB and unnumbered interface discovery & polling

• NNM V6.0
• Connector down ECS & critical path analysis in netmon
• Relational event display & status polling reduction.

• NNM V6.2
• SNMP-based polling and object-based polling
• Change default status settings to quiet unconnected ports

• NNM V6.31
• Major change to default status event behaviors for Node/If
• NodeIf, IntermittentStatus, status in Dynamic Views

• NNM V6.4
• Status polling and ECS interval tweaks to reduce events

Summary of default status polling behavior

• Global default for any discovered interface: 15 minutes
• Same for Layer 2 SNMP-discovered interfaces
• Polls are scheduled by netmon and spread randomly to reduce load

• Status polling reduction for secondary failures
• Interval doubles for interfaces beyond primary IF (V6.0+)

• Object-based polling (V6.2+)
• Routers, bridges, hubs polled more frequently, Primary IF’s even more
• V6.4: poll less frequently (except primary Ifs); add node objects

• Dynamically-adjusting polling by netmon (V6.31+)
• All down interfaces re-polled at 2 and 4 minutes
• All up interfaces re-polled at 2 minutes
• All connector interfaces immediately polled when one goes down

Layer 2 polling default status behaviors

• Support for Bridge, MAU, Repeater MIB; VLANs
• Un-numbered Ifs: inferred from port table, polled via ARP

• Status (V5-V6.1): Critical/Normal; (V6.2+): Unknown/Normal

• SNMP status mapping fixed from V5 until V6.2 (all log-only)
• Status reflected in maps, but not in Alarm Browser

ifAdminStatus ifOperStatus OV Status
--

down any DISABLED
testing any TESTING

up up NORMAL
up down CRITICAL
up testing TESTING

Layer 2 status configurable in NNM V6.2+

• netmon.statusMapping defines customizable SNMP status levels
• File contains colon separated triplets. Possible values:

ifAdminStatus : ifOperStatus : Status
--

up up unset
down down unknown
testing testing normal, up
any unknown critical, down

dormant disabled
notpresent unmanaged

lowerlayerdown restricted
any testing

SNMP-based polling NNM V6.2+

• netmon.snmpStatus – Status poll via SNMP by IP Addr. ranges
• Designed to provide alternative to ICMP as status mechanism
• Queries ifIndex, ifOperStatus, ifAdminStatus
• Interface status set per netmon.statusMapping rules

• Be careful to list only SNMP-supported devices

• netmon –k snmpTimeoutImplies=status (lrf setting)
• Possible values: unknown, unchanged, critical (default)

• Example $OV_CONF/netmon.snmpStatus file entries:
10.2.112.86 # tomcat
10.2.1-255.0-49
10.2.4-5.*
..*.*

Object-based polling NNM V6.2+

• Options -> SNMP Configuration -> Poll Objects button
• JAVA GUI to configure netmon.statusIntervals
• Configuration file format: filter:interval:[primary if interval]

• Affects Default polling intervals out of box:
• Tightens default polling intervals for Routers, Bridges, Hubs
• Loosens default polling intervals for Nodes to 1h (V6.4)

• Uses netmon’s Critical Path Analysis to determine primary
• Uses NNM standard filters and filter definition language
• Command line to determine polling interval for device/interface:

xnmsnmpconf –resolve target
nmdemandpoll –i target (issues polls)

Object-based polling NNM V6.2+

• Default Object-based polling intervals:

• NNM V6.2:
• NNM V6.31:

• NNM V6.4:

Dynamically-adjusting status polling

• V6.0 netmon enhancement to support Connector Down
• Reduce status polls issued to secondary failure-mode If’s

• V6.31 netmon status polling enhancements:
• Priority status polling for multi-homed nodes

• Old way: Stick to schedule for polling other IF’s when one IF fails
• New way: Immediately poll other “up” IFs on node; IFNode applies

• False node down’s
• Old way: Stick to schedule for polling newly down interface
• New way: Poll down IF at 2 minutes & 4 minutes; pair-wise applies

• Flapping status
• Old way: Stick to schedule for polling newly up interface
• New way: Poll IF at 2 minutes; intermittentStatus circuit applies

Summary of event correlations affecting status events

• NNM 6.0:
• Connector Down relates primary to secondary failures

• Node_down events show related IF_down events
• Repeated Event applied to Node_up
• Pair-wise applied to many status events

• Alarms acknowledged if up condition occurs within 10 minutes
•NNM 6.31:

• NodeIF supplements Connector Down
• Pair-wise behavior updated & IntermittentStatus added

• NNM 6.4
• De-duplication applied to status events
• Status intervals, some ECS circuit parameters opened up

Cascade failure status event handling

• Introduced NNM 6.0 through several major functionality adds:
• Critical route analysis in netmon

• netmon builds in-memory path to every interface
• Distinguish primary and secondary failures

• New varbind added to status events: ECS UUID of Primary

• Reduce polls to secondary failures if not important nodes
• Important Nodes filters defined using standard NNM FDL

• ECS runtime engine with Connector Down correlation
• Suppresses secondary failure events unless important

• Relational event store (SOLID) - trapd.log deprecated
• Show Correlated Events to view suppressed alarms

Cascade failure status event handling

Router_A Router_B

Bridge_C

Netmon

X Y Z

Workstations

Mgr Host N
SNMP/ICMP

ovtopmd

topo
DB

ipmap/ovw

PMD/ECS

Events Browser
xnmevents

Internet

Event Bus

Topology Bus

o Interface B.2 Unknown
Drill
Down

1 1

1

2

2

2

1

1 11

o Interface B.1 Down
o Interface C.1 Unknown
o Interface C.2 Unknown
o Interface Z.1 Unknown
o Interface Y.1 Unknown
o Interface X.1 Unknown

Connector down ECS Critical route analysis

Relational alarm browser

Connector Down configuration entry points

• Network Polling Config:
• Event Correlation:

Pair-wise correlation

• Introduced in NNM V6.0
• Applied to all status events logged (next slide)
• Status alarms acknowledged if parent rec’d in PairedTimeWindow (10m)
• Child events released immediately; Automatic actions launched
• No reduction in the number of status events seen in alarm browser

• Behavior changed in NNM V6.31
• Status alarms deleted if parent rec’d in PairedTimeWindow (10 minutes)
• Child events held. Event only seen in alarm browser after 10 minute delay
• Automated actions not launched prematurely, paired events never seen.
• Details of parameters changed:

• DeleteOrAcknowledge changed from AutoAcknowledge to Delete
• ChildEventImmediateOutput=false
• InhibitParentOfInhibitedChild=true

Status events affected by Pair-wise

• V6.0-V6.31:
• Node up acknowledges Node: _Marginal, _Warning, _Major, _Down
• Segment_Normal acknowledges Segment_Major, Segment_Critical
• Network_Normal acks Network_Warning, Network_Critical
• Station_Normal acks Station: _Marginal, _Warning, _Major, _Critical
• Remote_Mgr_Up acknowledges Remote_Mgr_Down

• V6.4:
• IF_Up deletes IF_Down
• Node_Up deletes Node_Down, Node_Unknown
• Segment_Normal deletes Segment_Major, Segment_Critical
• Network_Normal deletes Network_Major, Network_Critical
• Station_Normal deletes Station: _Marginal, _Major, _Critical
• Remote_Mgr_Up deletes Remote_Mgr_Down

Pair-wise correlation example 1

• All NNM versions prior to V6.0
• Not in effect for any default status events
• All status event released immediately and no stateful data held

Pair-wise correlation example 2

• NNM V6.0-V6.31
• Node Down at 19:21; Node down event released immediately

• PairedTimeWindow expires (10 minutes) – no action
• Node Down at 19:51; If Up event received within 10 min

• Pair-wise acknowledges message
• Correlated events show ConnectorDown’s correlated-events

Pair-wise correlation example 3

• V6.31+:
• IF detected unreachable at 08:31
• Event held until PairedTimeWindow expires (10 minutes by default)
• IF_down event released to alarm browser at 08:41 with original timestamp
• IF_up is a separate, un-correlated event

• No alarms ever seen alarm browser if If_up received within 10 minutes

De-duplication (V6.4+)

• Dedup is a post-processing correlation,
• Fed from OVAlarmSRV vs. pmd for other ECS circuits
• Improves interaction with standard correlations effecting events
• More info: NNM_Event_Reduction White Paper & dedup.conf man/ref

• Repeated event correlation becomes a “legacy” correlation
• Repeated event default correlations affecting status:

• OV_Node_Up in V6.0+ (RepeatedTimeWidow = 1h)

De-duplication (V6.4+)

• Replaces existing identical event with latest; embedding previous
• $OV_CONF/dedup.conf is only configuration entry point
• Status events configured for de-dup by default:

• OV_IF_Down, OV_IF_Unknown, OV_IF_Intermittent

NodeIf correlation (V6.31+)

• Part of “node bias” paradigm shift Why? What was broken?
• For multiple interface devices:

• Individual interface status “log-only” prior to V6.31
• Connector device IF events not seen in alarm browser

• Intermediate node status alarms OK, but not complete
• Node up unpredictable, for example:

• Node goes down, most interfaces come up – no node up event
• Node up Repeated Event correlation a band-aid

• For single interface devices:
• Interface status always directly maps to node status
• Too many events if interface logging behaviors changed

NodeIf circuit characteristics (V6.31+)

• Supplements Connector Down correlation
• Connector Down provides event suppression of secondary failures
• NodeIf provides event suppression of connector nodes’ interface events
• Router/switch interface status events are correlated to the node event

• Uses data from new status event varbinds passed by netmon
• Distinguishes simple devices (non-connector) from connector devices
• Looks at # of If’s and object capabilities (isIPRouter and isSwitch)

• Connector Device behavior:
• Gather interface events; wait up to PairedTimeWindow (10 minutes);
• Send resultant node status event unless node down or unknown is detected

• Simple Device behavior:
• Send interface status events immediately, always suppress node status

• Coupled to Pair-wise correlation’s PairedTimeWindow

NodeIf circuit event display

• One event in Alarm Browser
• IF_down, or IF_Unknown
• Related interface events embedded in Actions -> Correlated Events
• of by double-click on number of events embedded

Status event enhancements supporting NodeIf

• First major change to default status event behaviors since V3.31
• New varbinds convey status of related primary failure entities

• Derived from netmon/standard connector-down event correlation
• Used in Alarm Message text to convey “root cause”

• New varbinds convey capabilities of related primary failure entities
• Allows correlations to be tuned depending on device-type

V6.31+ status event configuration

New varbinds in NNM 6.31+ status events

IF Status Node Status
Varbind # Varbind # Description

$11 Number of bits in the interface subnet mask
$12 Interface ifAlias (hooray!)
$13 $8 Local list of capabilities
$14 $9 Name of primary failure host
$15 $10 Name of primary failure entity
$16 $11 OV OID of primary failure entity
$17 $12 Description of primary failure entity
$18 $13 Primary failure entity list of capabilities

NodeIf ECS circuit configuration

• PairedTimedWindow is only available parameter
• V6.31 “internal” correlations

• Three circuits added that are not configurable from Event Correlation GUI
• NodeIf, IntermittentStatus, Chassis

• Configured through edit of .ds files in $OV_CONF/ecs/circuits/internal
• “Managing” guide has procedure for reverting to previous version behavior
• UNIX: NodeIf.ds is symbolic link to PairWise.ds, thus settable from GUI

• V6.4+ Correlation Composer
• Launch from legacy Event Correlation GUI to configure NodeIf correlation
• Allows “role-your-own” ECS circuits. (hooray!)

• NodeIf correlation structure:
• Main correlation: OV_NodeIf_NodeDown – correlates IF to Node events
• Two “helper” correlations:

• OV_NodeIf_PrimaryIfUnknown – toss spurious unconnected IF events
• OV NodeIf NodeNotConnector – toss Node events (simple devices)

IntermittentStatus correlation

• New correlation in NNM V6.31+
• Provides visibility to Pair-wise suppressions that are repeating
• Applies only to connector device interfaces as determined by netmon

• New status event
• OV_IF_Intermittent – OpenView enterprise 58982423

• Details
• Generated if IF_down rec’d RATE_COUNT times over RATE_PERIOD
• RATE_COUNT

• Default is 4 in V6.31
• Default is 5 in V6.4

• RATE_PERIOD Default is 30 minutes
• Loosely coupled to default status polling intervals
• Loosely coupled to netmon’s dynamic re-polls at 2 and 4 minutes

Correlation Composer (V6.4+)

• Premised on common logic sets for event-reducing correlations
• A “Super circuit” providing sub-circuits:

• Suppress, enhance, rate, repeated, transient, multiple source
• Correlations defined under this model are called “instances”

• Not a replacement for default Event Correlation GUI
• Note new “regular” correlation added in V6.4: FrameRelay

• More:
• $OV_WWW/htdocs/C/manuals/COMPOSER.pdf
• $OV_DOC/WhitePapers/Developing_NNM_Event_Reduction.pdf

•Event reduction tools in ascending order of complexity:
• Event Customization, e.g. set event log-only or ignore
• De-duplication
• Composer
• ECS Circuit customization

Event correlation configuration (V6.4+)

Scenario: Simple device unreachable

• Computer with one interface goes down (NNM V6.31+)
• Node_down event will never be generated, suppressed by NodeIf
• IF_down event held by Pair-wise 10 minutes, then sent to alarm browser

• Automatic actions launched only if If_up event not received in 10 min
• No alarm sent at all if If_up event not received in 10 minutes

• Primary interface down event embedded by ConnectorDown
• Any existing If_down events in Alarm Browser embedded by dedup (V6.4)

• Computer with one interface goes down (NNM V6.0 up to V6.31)
• Only Node_down event sent since all IF events log-only
• Node_down sent to alarm browser immediately, automatic actions launched
• Node down acknowledged if Node_up rec’d within 10 min by pair-wise

Scenario: Connector device interface outages

• One or more interfaces on a switch go down (V6.31+)
• IF_down event held by NodeIF for PairedTimeWindow (10 minutes)
• IF events suppressed/embedded if Node_down or Node_Unknown detected
• Additional IF_down events for switch suppressed and embedded
• Pair-wise in effect: if IF comes up within 10 mins, IF_down/up pair discarded
• IntermittentStatus event sent if IF “flaps” 4 or 5 times in 30 minutes
• Primary failure event embedded by ConnectorDown
• Any existing If_down events in Alarm Browser embedded by dedup (V6.4)

• One or more interfaces on a switch go down (All previous versions)
• Node status event may be generated if status propagation rules satisfied
• Node_down or Node_unknown sent when last reachable interface goes down
• Node_up sent when all interfaces reachable, Repeated Event in effect (V6.0+)
• Pair-wise in effect: Node up within 10 mins, Node status event acknowledged

Summary of influences on netmon status polling interval (defaults)

• Global status polling settings (xnmsnmpconf)
• 15 Minutes, 0.8 sec timeout, 2 retries

• Secondary failure reduction multiplier (NNM V6.0+)
• Reduce polls to 2ndaries at scheduled status polling interval times two

• Object-based status (V6.2+)
• Status polling intervals based on any NNM filter, e.g. Routers, Bridges
• Status polling can optionally specified for primary interfaces

• Priority status polling (V6.31+)
• All interfaces on connector devices polled immediately if one IF down

• Failure mode polling (V6.31+)
• Any down interface re-polled at 2 minutes and 4 minutes

• Intermittent status polling (V6.31+)
• Any newly up interface re-polled at 2 minutes

• Default logging status and effect of Connector Down & NodeIf
6.31- 6.31+

OV_Node_Up: All interfaces up LO LO
OV_Node_Warning: One interface down; others up or unknown L LO
OV_Node_Marginal: >One interface down; others up or unknown L LO
OV_Node_Major: One interface up L LO
OV_Node_Down: All interfaces down or unknown. L* C*
OV_Node_Unknown: All interfaces on the node are unknown L* C*

OV_IF_Down: Interface Down LO C*
OV_IF_Up: Interface Up LO LO
OV_IF_Unknown: Interface Unknown LO C*

L – Logged LO – Log-Only C – Correlated by NodeIf * ConnectorDown

Summary of node and interface status events

6.31- 6.31+
OV_Segment_: Marginal, Normal, Warning, Unknown LO LO
OV_Segment_Major: One contained node normal L LO
OV_Segment_Critical: All contained nodes down or unknown L LO
OV_Network_: Marginal, Normal, Warning, Unknown LO LO
OV_Network_Major: All connectors & segments down or unknown L LO
OV_Network_Critical: One connector or segment down or unknown L LO
Other status events affecting topology

• Connection (all LO),
• Station_*
• Remote_Mgr_*
• IPV6_* (V6.4+)
• HSRP_* (V6.4+)

Default map status propagation:

Summary of topology status

Summary of status configuration entry points

• General Status Polling configuration
• SNMP Configuration (xnmsnmpconf): Polling intervals
• Network Polling Configuration GUI (xnmpolling): Polling behavior
• netmon.statusIntervals: Polling by Filter Object
• netmon switches (e.g. -k snmpTimeoutInmplies=status)

• Events
• Event Configuration GUI (xnmtrap): Configure status alarms
• netmon.snmpStatus, netmon.statusMapping: Configure SNMP Status

• ECS
• Options -> Event Configuration -> Edit -> Event Correlation

• Maps
• Map topology status propagation rules (Map -> Properties)
• Symbol properties status source (object, symbol, compound)

Future enhancements affecting status polling that I’ve heard tell of

• NNM 6.5 (2004)
• Rules-based polling
• Additional event-map view integrations for drill-down

That’s all folks…
Thank you!

