
NNM Status Polling:
The Big Uneasy

Presented by Mike Peckar
Fognet Consulting

The Mint Julep The Hurricane

What�s up with this session?
The �Node Down� Event is the subject of mis-

understanding and misinterpretation. This session
exposes the whole status polling infrastructure
from the perspective of the Node Down event

By the end of this session, you will want to drink
heavily. No problem - you are in New Orleans!

Agenda
� The Node Down

� What is a �Node Down�?
� Node Down Issues

� When is a �Node Down� not a �Node Down� and
what can I do about it?

� Improving Status Events
� Some steps you can take � with emphasis on those

things you can do yourself relatively easily
� Drink Recipes

� Please don�t skip ahead

The Node Down Event
� An event generated by OpenView�s netmon

� Node Down is OpenView enterprise event
� .1.3.6.1.4.1.11.2.17.1.58916865
� Event generated by NNM server but source is set to target

� An ovevent sent internally to NNM
� NNM internally reformats all SNMP traps to ovevents
� Adds status, logging, actions, and are transported reliably

� Node down is only generated when all managed
interfaces are detected down based on:

� The Interface Down event
� NNM topology database known status of other interfaces

The Node Down Event
� netmon generates status polls:

� ICMP mask requests for discovered IP interfaces
� SNMP or ARP for discovered Level 2 interfaces
� SNMP status polls for selected sets of devices (6.2)
� IPX for NT version only

� Interval, timeouts and retries are configurable
� Default: 5m interval, 0.8s timeout with 2 retries

� Interface Down trap conveys status poll failure
� Default: a log-only OpenView event

The Node Down Event
� The morphology of a failed ICMP status poll

1. netmon-scheduled ICMP status poll to interface fails

2. Interface Down trap generated by netmon as log-only

3. ECS Connector Down logic is applied at this point

4. Interface status updated in topology by ovtopmd

5. IPMAP changes status at node level (interfaces) -
propagated status at segment level (nodes) & above

6. ovtopmd checked for status of node�s other interfaces

7. If all others down, netmon generates Node Down

The Node Down Event
� What is a Node Up Event?

� An event generated by OpenView�s netmon

� Generated when all managed interfaces for a node
responds to their respective status polls

� Status poll success generates Interface_Up Event

� Node Up always paired with log-only Interface_Up

The Node Down Event
� Operational & Administrative Status

The Node Down Event
Status polling-related OpenView Events
Event Logging Status

OV_IF_Down Log-only IF Critical

OV_IF_AdminDown Log-only IF AdminDown

OV_IF_Unknown Log-only IF Unknown

OV_IF_Testing Log-only IF testing

OV_IF_Up Log-only IF Normal

OV_Node_Down Status event Node Critical

OV_Node_Up Status event Node Normal

The Node Down Event
IF Status for L2-discovered interfaces (all log-only)

� SNMP-Supported defaults per E. Pulsipher, 5.0+
ifAdminStatus ifOperStatus OV Status

down any DISABLED

testing any TESTING

up up NORMAL

up down CRITICAL

up testing TESTING

� SNMP-Unsupported: inferred from port table maps:
OV Status is CRITICAL for Down and NORMAL for Down

The Node Down Event
� Configurable SNMP status poll (NNM 6.2+)

� Applies to IP addr�s & ranges entered in netmon.snmpStatus

� Queries ifOperStatus and ifAdminStatus

� Useful when no route to device (L2-connected)

� Status conveyed on timeout varies according to
� netmon �k snmpTimeoutImplies=status lrf setting

� Unknown, unchanged, critical (default)

� netmon.statusMapping file triplets: Admin:Oper:Status

� E.g.: up:down:down

� sets all adminUp and operDown interfaces to critical

� Settings do not apply to netmon-discovered L2 interfaces?

Node Down Issues
1. Node is down but no Node Down generated

2. Node comes up but no Node Up generated

3. Node is up but false Node Down generated

Node Down Issues
1. Node is down but no Node Down generated

� Node is unmanaged or an interface is unmanged

� Node unreachable from node other than NNM

� Target node is multi-homed: Node Down generated
only when all managed interfaces are reported down

� Status poll hasn�t occurred yet (behind schedule?)

� Node down suppressed for ECS Connector Down: a
node in the network path to the target node is down.

� SNMP-polled and snmpTimeoutImplies=unchanged

Node Down Issues
1. Node is down but no Node Down generated (Cont�d)
� ECS Connector Down, Node Down, and status polling

� Purpose: prevents �cascade failures� and throttles status polls
� ECS correlates with network path as maintained by netmon to:

� Distinguish Primary failures: those interfaces closest in path
� Distinguish Secondary failures: those interfaces that are

�downstream�
� Filter Important Nodes: defines nodes not to include as

secondary
� Default: Set secondary as unknown and suppress alarms
� Utilizes drill-down capabilities of event browser via eventdb

Node Down Issues
1. Node is down but no Node Down generated (Cont�d)

� ECS Connector Down configured via Polling Config:

Node Down Issues
1. Node is down but no Node Down generated (Cont�d)

� What to do
� Check polling config and ECS settings

� Check managed/unmanaged states of interfaces
� Use ovtopodump

� See Node Down Issue #3 regarding polling falling behind

� See Section 3: Improving Status Polling

Node Down Issues
2. Node comes up but no Node Up generated

� Node multi-homed and at least one interface is still
down when node becomes reachable from NNM.

� Example: Remote router with a backup ISDN
� Reachable interface goes down, far end interfaces also go

down, NNM sees all interfaces down: Node Down

� Reachable interface goes up, far end interfaces can be
polled and come up, ISDN interface down, NO Node Up

� What to do:
� See Section 3: Improving Status Polling

Node Down Issues
3. Node is up but false Node Down generated

The infamous �False Node Down�

Case A:
Issues external to NNM Server

Case B:
Issues internal to NNM Server

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)
Case A: External �False� Node Downs
ICMP PINGS don�t have much of a chance these days:

� ICMP protocol dropped by busy router due to priority
� ICMP protocol blocked by constantly changing security

tools/firewalls/policy management
� ICMP timeouts due to lower level latencies: net congestion
� ICMP timeouts due to higher level latencies: VPN Gateways
� ICMP reply timeouts due to target system resources (NT,

cheap NICs, etc..)

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)

Case B: Internal �False� Node Downs

NNM tuning, server OS tuning, or sizing issues:
� Interval/Timeouts/Retries improperly configured

� ICMP receive buffer overruns due to:
� Excessive ICMP Queue length

� Excessive number of unpingable interfaces

� DNS configuration and lookup latency

� Excessive number of managed interfaces

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)

What to do first: Determine if issues external or internal

� View Network Polling Stats under Fault Menu:

Seconds until
Next ICMP poll
> 0 = OK!

False Node Down
issues are external

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)

What to do: First: See if issues are external or internal

� ovstatus �v netmon
� Provides netmon performance troubleshooting info

� netmon tracing and logging
� Provides several layers of detail

� See man/ref pages

� Start data collection on network polling statistics
� Catch trends in netmon performance

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)

What to do: View log-only events:

� Method 1
� Log events to trapd.log (legacy, performance hit)
� In pmd.lrf: OVs_ YES_ START::- SOV_ EVENT; t: OVs_ WELL_ BEHAVED: 15: PAUSE

� Method 2
� ovdumpevents �f mytraplog.txt
� ovdwevent exports the data from the event database to the default

(SOLID) data warehouse or other configured/supported ODBC
store, but Log-only data not exported by ovdwevent by default:

� touch $OV_ANALYSIS_CONF/NO_EXTREME_EVENT_FILTERING

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)
What to do: Case A - external issues:

� Check ICMP protocol priority in router configs
� Implement operator procedures

� Manually re-poll devices reported down by NNM
� Poll nodes from alternative sources, traceroute, SNMP, etc

� Implement automated actions to re-poll nodes
� Using automatic action scripts on node/interface down
� Using event correlation engines
� See Section 3: Improving Status Polling for examples!

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)
What to do: Case B - internal issues:
� Improve status polling performance

� Turn off superfluous polling (http, level-2, SNMP v2)
� Consider netmon switch for burst mode (-b 20)
� Check impact of ICMP polls w.r.t traffic near NNM LAN
� Increase status poll reduction multiplier in ECS Conn. Down

� Don�t forget OS and Hardware issues
� Like kernel parameters (see NNM Installation Guide)
� Or Network performance settings (nettune, ndd, etc)

� Address scalability issues by distributing NNM

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)
What to do: Case B - internal issues:
� Examine polling timeouts, retries & intervals

� Remember: timeout doubled for every retry�
� Default: t: 0.8 r: 2 Status poll fails after 5.6 seconds

t: 2.0 r: 4 Status poll fails after 30 seconds
t: 5.0 r: 5 Status poll fails after 5 min, 15 sec

� Default Interval: 5 minutes
Balance timeout/retries with polling intervals

� Set status polling under Options � SNMP Configuration

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)
What to do: Case B - internal issues:
� ICMP receive buffer overruns on NNM system

� See �q switch in netmon man/reference page:
-q ICMP-queue-length Indicates to netmon that it should
allow up to ICMP-queue-length outstanding ICMP
requests at a time for status polling of interfaces).
(default: UNIX = 20, Windows NT operating system = 3)
PLEASE NOTE: If you increase the ICMP-queue-length too
much, you may find that interfaces may be declared
Critical when they are actually up. This is because
there is a limited system buffer for incoming ICMP
responses, and having too many arriving at the same
time can cause some to be lost. If you find false
Critical indications after increasing the ICMP-queue-
length, you should reduce the length to the point
where the problem goes away.

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)
What to do: Case B - internal issues:

� Do not muck with queue lengths haphazardly � remember:
� longer timeouts/retries = fewer simultaneous polls

� Queue may fill up and cause status polling to fall behind:
� nnmICMPSecsUntilNextPoll values will be less than 0
� False Node Downs not always generated by this condition,

but status polls are failing to occur on schedule
� Increasing ICMP Queue length risks receive buffer overruns

� Polling may �catch up, but False Node Downs reported
� Increase interval, manage fewer interfaces, scale up.

� Shorter timeouts/retries = greater risk of latency timeout

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)

What to do: Case B - internal issues:

� DNS configuration and lookup latency

� See Doug Stevenson�s excellent session on this topic:
Name Resolution in Network & Systems Management

� Which took place today at 1:00 �

� Note each ICMP status poll executes a lookup! What to do:
� Implement consistent and ubiquitous naming conventions

� Test name resolution latency

� Use loopback addresses on your routers and switches

� Check netmon performance statistics

� Implement cache-only DNS server on NNM to conserve resources

Node Down Issues
3. Node is up but false Node Down generated (Cont�d)
What to do: Case B - internal issues:
� DNS configuration and lookup latency for NNM 6.2+

� Use netmon�s -U minNameServerAlertAvgMsecs lrf switch
� After netmon makes 100 Name Service lookups, it will

continuously monitor the total average time for name server
responses to validate that there is adequate performance of the
Name Service system. If the running average exceeds
minNameServerAlertAvgMsecs milliseconds, netmon will
generate an OV_NS_PerformErr event. This event indicates
that netmon is unnecessarily slowed by slow Name Service
requests. To turn off this feature, set
minNameServerAlertAvgMsecs to 0. Run netmon -? to see
the default value of this option.

Improving Status Events
� In General:

� Rename events in Options � Event Configuration:
Event Text Rename to:

OV_Node_Down Node Down Node unreachable from NNM

OV_Node_Up Node Up Node reachable from NNM

OV_If_Down If Down If $7 fails status poll

OV_IF_Up If Up If $7 responds to status poll

$7 is SNMP event variable binding for Interface Name, e.g. Lan0

Improving Status Events
� Ping Reports � 6.2 netmon-snmpCollect hook

� Round Trip Time - msec between send and receive

� Ping Retry % - proportion of configured retries used

� Netmon collects, but does not store by default

� Define filters to name node sources & configure in
Options � Data Collection & Thresholds

– $OV_CONF/snmpRep.conf shows MIB
Expressions used for these collections

� Or, Turn off to improve netmon performance

Improving Status Events
� If down and If Up Events:

� Copy event and change from log-only to status event

� Set Multi-homed devices as sources for new event

� Get fancy if you wish�
� Find multi-homed devices using:

• ovobjprint -a "TopM Interface List”

� Use external list as source for event (supported)

� This buys you:
� Status alarms for important previously log-only events

� No duplicate alarms for single-homed nodes

Improving Status Events
� Simple re-polling

� Write a simple script that runs as automatic action to
the Interface Down event that:

� Exits if too many instances are running (message flood)

� Runs NNM�s netcheck utility to re-poll interface

� Report results into a log, or as email, or uses:

� SendMsg.ovpl in $OV_CONTRIB to send an ovevent

Get Fancy if you wish:
� Query NNM topo or object databases for node capabilities

� E.g. If SNMP Supported, check SNMP UpTime

Improving Status Events
� More capability-based scripted actions

� If SNMP reports multiple interfaces report status of other
interfaces via rnetstat � compare this to status of other
interfaces as reported in NNM topology database, contrast this
with SNMP ifTable status queries.

� If SNMP reports agent matches your list of TCP-capable
agents, attempt a TCP port connect and report results.

� Write capability logging scripts as auto-action to the Node
Added (discovery) event � and key re-polling scripts (auto-
actions to If Down) to results. Rediscover your network to
populate lists.

Improving Status Events
� Capability-based re-polling choices

� Scripted auto actions on Interface Down trap
� Using NNM utilities � using PERL with NET:PING

� Event Correlation engines
� ECS � Netcool � NerveCenter � Taave � Many others

� Freeware and simple polling and status tools
� MTRG - What�s up Gold - PERL w/ NET:PING

� Developer�s tools
� NNM DevKit - CSOV Perl Mod for direct

manipulation of NNM Icons based on your poller

Improving Status Events
� Recap

� Node Down is logged, but log-only Interface Down is
of much greater importance

� Interface Down doesn�t mean the interface is down

� A standard status poll in NNM is a single ICMP ping

� Issues arise from the strangest of places (like DNS)

� You can do simple things to mitigate confusion

� You can do simple things to improve polling integrity

� Things can get very complex very quickly, too, so�

Mint Julep
� The perfect julep comes of infusing the

bourbon with the mint and letting it have a night�s rest.

� 1 bottle Kentucky Bourbon

� 3 cups Fresh Mint Leaves

� 24 Fresh Mint Sprigs

� 6 Lemon Twists

� Bring a half-cup of water to a boil. Remove from heat and add 1 cup of
sugar. Refrigerate until cool. Pour bourbon into a 1-1/2 quart jar and add
mint leaves. Cover and refrigerate overnight. Strain liquor into a pitcher

and discard the mint. Sweeten to taste with sugar and water mixture.
� Fill a julep cup or a Collins glass with cracked ice. Add infused bourbon

and stir until glass frosts. Take a twist of lemon and rub it on the rim of

the glass and toss it into the drink. Garnish with mint sprigs. Serves 6.

Hurricane
Ingredients:

dark rum

passion fruit juice

Hawaiian Punch

Fill a Blender ½ full with ice. Add 8

oz Dark Rum and equal parts passion

fruit juice. Fill the rest with the punch

and blend. Add squeeze of lime.

Make approximately 3 16-oz servings

Hand Grenade
� Ameretto

� 2 shots Melon Liquer

� 2 shots Everclear (190 proof)

� Pineapple juice

Mixing instructions:

Begin by filling the glass halfway with Amaretto, add shots of
melon, add shots of everclear, add rest of glass with pineapple
juice, stir, then pour into glass with ice.

Fin

Laissez les bon temps rouler..

